- 欢迎访问起航教学!
八年级数学上册期末考试复习教学案:中心对称与中心对称图形
12-14 18:41:36 分类:初二数学教案 浏览次数: 958次一、知识点:
1、图形的旋转:
在平面内,将一个图形绕一个定点旋转一定的角度,这样的图形运动称为图形的旋转,这个定点称为旋转中心,旋转的角度称为旋转角。旋转前、后的图形全等。对应点到旋转中心的距离相等。每一对对应点与旋转中心的连线所成的角彼此相等。
2、中心对称:
把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么称这两个图形关于这一点对称。也称这两个图形成中心对称,这个点叫做对称中心,两个图形中的对应点叫做对称点。
注意:①中心对称是旋转的一种特例,因此,
成中心对称的两个图形具有旋转图形的一切性质。
②成中心对称的2个图形,对称点的连线都经过对称中心,
并且被对称中心平分。
3、中心对称图形:
把一个平面图形绕着某一点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形。这个点就是它的对称中心。
中心对称图形上的每一对对应点所连成的线段都被对称中心平分。
4、中心对称与中心对称图形之间的关系:
区别:(1)中心对称是指两个图形的关系,中心对称图形是指具有某种性质的图形。(2)成中心对称的两个图形的对称点分别在两个图形上,中心对称图形的对称点在一个图形上。
联系:若把中心对称图形的两部分看成两个图形,则它们成中心对称;若把中心对称的两个图形看成一个整体,则成为中心对称图形 .
5、对比轴对称图形与中心对称图形:
轴对称图形中心对称图形
有一条对称轴——直线有一个对称中心——点
沿对称轴对折绕对称中心旋转180O
对折后与原图形重合旋转后与原图形重合
二、举例:
例1:如图,将点阵中的图形绕点O按逆时针方向旋转900,画出旋转后的图形.
例2:画出将ΔABC绕点O按顺时针方向旋转120°后的对应三角形。
例3:如图,已知ΔABC是直角三角形,BC为斜边。若AP=3,将ΔABP绕点A逆时针旋转后,能与ΔACP′重合,求PP′的长。
例4:如图AC=BD,∠A=∠B,点E、F在AB上,且DE∥CF,试说明此图是中心对称图形的理由。
例5:已知:如图,在△ABC中,∠BAC=1200,以BC为边向形外作等边三角形△BCD,把△ABD绕着点D按顺时针方向旋转600后得到△ECD,若AB=3,AC=2,求∠BAD的度数与AD的长.
例6:如图,直线l1⊥l2,垂足为O,点A1与点A关于直线l1对称,点A2与点A关于直线l2对称。点A1与点A2有怎样的对称关系?你能说明理由吗?
三、作业:
1、画出等腰Rt△ABC绕点C逆时针旋转90°后的图形。
2、在等腰直角△ABC中,∠C=900,BC=2cm,如果以AC的中点O为旋转中心,将这个三角形旋转1800,点B落在点B′处,求BB′的长度
请点击下载Word版精品试题:八年级数学上册期末考试复习教学案:中心对称与中心对称图形相关热词搜索:
评论排行
初二数学教案 热门排行
- · 北师大版八年级数学上册《7.2解二元一
- · 人教版八年级数学上册《一次函数的应用
- · 八年级数学上册《一次函数》教案
- · 新人教版八年级数学上册《15.1.2 整式
- · 新人教版八年级数学上册《乘法公式──
- · 人教版八年级数学下册《17.1.2反比例函
- · 人教版八年级数学下册《17.2 实际问题
- · 人教版八年级数学下册《分式的乘除法第
- · 北师大版八年级数学上册《第六章回顾与
- · 苏教版八年级数学上册《函数基础复习(
- · 苏教版八年级数学上册《第五章小结与思
- · 苏教版八年级数学上册《第五章 数学活
- · 苏教版八年级数学上册《5.4一次函数的
- · 苏教版八年级数学上册《5.4一次函数的
- · 苏教版八年级数学上册《5.1函数(1)》
- · 苏教版八年级数学上册《4.2位置的变化
- · 苏教版八年级数学上册《第四章小结与思
- · 新人教版八年级数学上册《15.2.5整式的
- · 新人教版八年级数学上册《15.1同底数幂
- · 新人教版八年级数学上册《21.4.1可化为
- · 苏教版八年级数学上册《4.1数量的变化
- · 苏教版八年级数学上册《4.1数量的变化
- · 苏教版八年级数学上册《5.2一次函数(
- · 苏教版八年级数学上册《5.1函数(2)》