- 欢迎访问起航教学!
人教版九年级数学上册《用列举法求概率(1)》教案
12-14 18:41:36 分类:初三数学教案 浏览次数: 484次活动: 1.从分别标有1,2,3 ,4,5号的5根纸签中随机地抽取一根.抽出的号码有多少种?其抽到1的概率为多少?
2.掷一个骰子,向上的一面的点数有多少种可能?向上一面的点数是1的概率是多少?
问题:以上两个实验有什么共同点?
得出概率公式:因此,一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相
等,事件A包含其中的、种结果,那么李件A发生的概率为P(A)=
例3如图25-8所示是计算机中“扫雷“游戏的画面,在 个小方格的正方形雷区中,随机埋藏着 颗地雷,每个小方格内最多只能藏 颗地雷。
小王在游戏开始时随机地踩中一个方格,踩中后出现了如图所示的情况,我们把与标号 的方格相邻的方格记为 区域(画线部分), 区域外的部分记为 区域,数字 表示在 区域中有 颗地雷,那么第二步应该踩 区域还是 区域?
小结
学生分组活动,通过实验回答老师的问题
学生讨论并总结: 以上两个试验有两个共同的特点:
1.一次试验中,可能出现的结果有限多个.
2.一次试验中,各种结果发生的可能性相等.
例1.小李手里有红桃1,2,3,4,5,6,从中任抽取一张牌,观察其牌上的数字.求下
列事件的概率.
(1)牌上的数字为3;
(2)牌上的数字为奇数;
(3)牌上的数字为大于3且小于6.
学生讨论分析问题,并试着求解。
分析:因为从6张牌子任抽取一张符合刚才总结的试验的两个特点,所以可用P(A)= 来求解.
解:任抽取一张牌子,其出现数字可能为1,2,3,4,5,6,共6种,这些数字出现的可
能性相同.
(1)P(点数为3)=1/6;
(2)P(点数为奇数)=3/6=1/2;
(3)牌上的数字为大于3且小于6的有4,5两种.
所以 P(点数大于3且小于6)=1/3
例2:如图25-7所示,有一个转盘,转盘分成4个相同的扇形,颇色分为红、绿、黄三种颇色,指针的位置固定,转动转盘后任其自由停止.其中的某个扇形会恰好停在指
针所指的位里(指针指向两个扇形的交线时,当作指向右边的扇形),求下列事件的概率
(1)指针指向绿色;
(2)指针指向红色或黄色
(3)指针不指向红色.
学生有了上一题的分析经验,这一题有学生自己试着独立完成。
分析:转一次转盘,它的可能结果有4种—有限个,并且各种结果发生的可能性相等.因此,它可以应用“ P(A)= ”问题,即“列举法”求概率.
解,(1) P(指针,向绿色)=1/4;
(2) P(指针指向红色或黄色)=3/4;
(3)P(指针不指向红色)=1/2
分析:第二步应该踩在遇到地雷小的概率,所以现在关键求出在 区域、 区域的概率并比较。
解:(1) 区域的方格共有 个,标号 表示在这 个方格中有 个方格各藏 颗地雷,因此,踩 区域的任一方格,遇到地雷的概率是 。
(2) 区域中共有 个小方格,其中有 个方格内各藏 颗地雷。因此,踩 区域的任一方格,遇到地雷的概率是 。
由于 ,所以踩 区域遇到地雷的可能性大于踩 区域遇到地雷的可能性,因而第二步应踩 区域。
学生归纳总结把学生分为10组,按要求做试验并回答问题.
教师巡视并参与学生的讨论。
教师根据学生回答情况适时补充完善学生的答案。
对于具有上述特点的试验,我们可以从事件所包含的各种可能的结果在全部可能
的试验结果中所占的比分析出事件的概率
相关热词搜索:
评论排行
初三数学教案 热门排行
- · 九年级数学下册《解直角三角形及其应用
- · 新人教版九年级数学下册《27.3 位似(
- · 人教版九年级数学下册《锐角三角函数(
- · 人教版九年级数学下册《解直解三角形小
- · 人教版九年级数学上册《24.1 圆(第3课
- · 人教版九年级数学上册《24.2与圆的位置
- · 人教版九年级数学上册《24.2.1点与圆的
- · 人教版九年级数学上册《25.2列举法求概
- · 人教版九年级数学下册《锐角三角函数》
- · 人教版九年级数学下册《27.2.1相似三角
- · 人教版九年级数学下册《二次函数》第一
- · 人教版九年级数学下册《26.4二次函数复
- · 北师大版九年级数学上册《4.3灯光与影
- · 北师大版九年级数学上册《2.2.3配方法
- · 北师大版九年级数学上册《2.1花边有多
- · 北师大版九年级数学上册《5.2.1反比例
- · 人教版九年级数学上册《用列举法求概率
- · 人教版九年级数学下册《27.2.1相似三角
- · 人教版九年级数学《27.2.3相似三角形的
- · 九年级数学中考复习《二次函数》教案1
- · 人教版九年级数学下册《30°、45°、6
- · 人教版九年级数学《相似三角形复习(1)
- · 人教版九年级数学第二十七章《相似》复
- · 人教版九年级数学《相似多边形的性质》