• 欢迎访问起航教学!
当前位置:起航教学资源网教学文章免费教案数学教案初二数学教案人教版八年级数学上册《正比例函数》教案二

人教版八年级数学上册《正比例函数》教案二

04-26 17:19:59   分类:初二数学教案   浏览次数: 351
标签:八年级数学教案,八年级数学下册教案,八年级数学上册教案,http://www.qihang56.com 人教版八年级数学上册《正比例函数》教案二,
教学目标
    1.认识正比例函数的意义.
    2.掌握正比例函数解析式特点.
    3.理解正比例函数图象性质及特点.
    4.能利用所学知识解决相关实际问题.
    教学重点
    1.理解正比例函数意义及解析式特点.
    2.掌握正比例函数图象的性质特点.
    3.能根据要求完成转化,解决问题.
    教学难点
    正比例函数图象性质特点的掌握.
    教学过程(本文来自优秀教育资源网淘.教.案.网)
    Ⅰ.提出问题,创设情境
    一九九六年,鸟类研究者在芬兰给一只燕鸥(候鸟)套上标志环.4个月零1周后人们在2.56万千米外的澳大利亚发现了它.
    1.这只百余克重的小鸟大约平均每天飞行多少千米(精确到10千米)?
    2.这只燕鸥的行程y(千米)与飞行时间x(天)之间有什么关系?
    3.这只燕鸥飞行1个半月的行程大约是多少千米?
    我们来共同分析:
    一个月按30天计算,这只燕鸥平均每天飞行的路程不少于:
    25600÷(30×4+7)≈200(km)
    若设这只燕鸥每天飞行的路程为200km,那么它的行程y(千米)就是飞行时间x(天)的函数.函数解析式为:
    y=200x(0≤x≤127)
    这只燕鸥飞行1个半月的行程,大约是x=45时函数y=200x的值.即
    y=200×45=9000(km)
    以上我们用y=200x对燕鸥在4个月零1周的飞行路程问题进行了刻画.尽管这只是近似的,但它可以作为反映燕鸥的行程与时间的对应规律的一个模型.
    类似于y=200x这种形式的函数在现实世界中还有很多.它们都具备什么样的特征呢?我们这节课就来学习.
    Ⅱ.导入新课
    首先我们来思考这样一些问题,看看变量之间的对应规律可用怎样的函数来表示?这些函数有什么共同特点?
    1.圆的周长L随半径r的大小变化而变化.
    2.铁的密度为7.8g/cm3.铁块的质量m(g)随它的体积V(cm3)的大小变化而变化.
    3.每个练习本的厚度为0.5cm.一些练习本摞在一些的总厚度h(cm)随这些练习本的本数n的变化而变化.
    4.冷冻一个0℃的物体,使它每分钟下降2℃.物体的温度T(℃)随冷冻时间t(分)的变化而变化.
答应:1.根据圆的周长公式可得:L=2 r.
    2.依据密度公式p= 可得:m=7.8V.
    3.据题意可知: h=0.5n.
    4.据题意可知:T=-2t.
    我们观察这些函数关系式,不难发现这些函数都是常数与自变量乘积的形式,和y=200x的形式一样.
   一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数(proportional func-tion),其中k叫做比例系数.
    我们现在已经知道了正比例函数关系式的特点,那么它的图象有什么特征呢?
    [活动一]
    画出下列正比例函数的图象,并进行比较,寻找两个函数图象的相同点与不同点,考虑两个函数的变化规律 请点击下载Word版完整教案:人教版八年级数学上册《正比例函数》教案二

相关热词搜索:

分享到: 收藏
评论排行