• 欢迎访问起航教学!
当前位置:起航教学资源网教学文章免费教案数学教案高一数学教案高一数学上学期(必修1)《2.2.2对数函数(三)》教案

高一数学上学期(必修1)《2.2.2对数函数(三)》教案

12-14 18:41:36   分类:高一数学教案   浏览次数: 987
标签:高一下册数学教案,高一数学必修5教案,http://www.qihang56.com 高一数学上学期(必修1)《2.2.2对数函数(三)》教案,

教学目标:
       知识与技能  理解指数函数与对数函数的依赖关系,了解反函数的概念,加深对函数的模型化思想的理解.
       过程与方法  通过作图,体会两种函数的单调性的异同.
       情感、态度、价值观  对体会指数函数与对数函数内在的对称统一.  
教学重点:
重点  难两种函数的内在联系,反函数的概念.
难点  反函数的概念.  
教学程序与环节设计:          
创设情境
组织探究
尝试练习
巩固反思
作业回馈
课外活动
由函数的观点分析例题,引出反函数的概念.
两种函数的内在联系,图象关系.
简单的反函数问题,单调性问题.
从宏观性、关联性角度试着给指数函数、对数函数的定义、图象、性质作一小结.
简单的反函数问题,单调性问题.  
互为反函数的函数图象的关系.

教学过程(本文来自优秀教育资源网淘.教.案.网)与操作设计:
环节呈现教学材料师生互动设计

材料一:
当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.根据些规律,人们获得了生物体碳14含量P与生物死亡年数t之间的关系.回答下列问题:
(1)求生物死亡t年后它机体内的碳14的含量P,并用函数的观点来解释P和t之间的关系,指出是我们所学过的何种函数?
(2)已知一生物体内碳14的残留量为P,试求该生物死亡的年数t,并用函数的观点来解释P和t之间的关系,指出是我们所学过的何种函数?
(3)这两个函数有什么特殊的关系?
(4)用映射的观点来解释P和t之间的对应关系是何种对应关系?
(5)由此你能获得怎样的启示?生:独立思考完成,讨论展示并分析自己的结果.  
师:引导学生分析归纳,总结概括得出结论:
(1)P和t之间的对应关系是一一对应;
(2)P关于t是指数函数 ;
t关于P是对数函数 ,它们的底数相同,所描述的都是碳14的衰变过程中,碳14含量P与死亡年数t之间的对应关系;
(3)本问题中的同底数的指数函数和对数函数,是描述同一种关系(碳14含量P与死亡年数t之间的对应关系)的不同数学模型.  
材料二:
由对数函数的定义可知,对数函数 是把指数函数 中的自变量与因变量对调位置而得出的,在列表画 的图象时,也是把指数函数 的对应值表里的 和 的数值对换,而得到对数函数

请点击下载Word版完整教案:高一数学上学期(必修1)《2.2.2对数函数(三)》教案教案《高一数学上学期(必修1)《2.2.2对数函数(三)》教案》,来自www.qihang56.com网!http://www.qihang56.com

相关热词搜索:

分享到: 收藏
评论排行