直线的倾斜角和斜率
03-06 17:39:44 分类:高二数学教案 浏览次数: 462次www.qihang56.com系数 变化 (同时注意 α的变化).
(2) 中的x系数k变化→直线变化→α变化 (同时注意 α的变化).
教师引导学生观察,归纳,猜想出倾斜角与 的系数的关系:倾斜角不同,方程中 的系数不同,而且这个系数正是倾斜角的正切!
【板书】
定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.记作 ,即 .
这样我们定义了一个从“形”的方面刻画直线相对于 轴(正方向)倾斜程度的量——倾斜角,现在我们又定义一个从“数”的方面刻画直线相对于 轴(正方向)倾斜程度的量——斜率.
指出下列直线的倾斜角和斜率:
(1) =- (2) = tg60° (3) = tg(-30°)
学生思考后回答,师生一起订正:(1)120°; (2)60°;(3)150°(为什么不是-30°呢?)
画图,指出倾斜角和斜率.
结合图3(也可以演示动画),观察倾斜角变化时,斜率的变化情况.
注意:当倾斜角为90°时,斜率不存在.
α=0° ß--à =0
0°<α<90° ß--à >0
α=90° ß--à 不存在
90°<α<180°ß--à <0
(四)直线过两点斜率公式的推导
【问题4】
如果给定直线的倾斜角,我们当然可以根据斜率的定义 =tgα求出直线的斜率;
如果给定直线上两点坐标,直线是确定的,倾斜角也是确定的,斜率就是确定的,那么又怎么求出直线的斜率呢?
即已知两点P1(x1,y1)、P2(x2,y2)(其中x1≠x2),求直线P1P2的斜率.
思路分析:
首先由学生提出思路,教师启发、引导:
运用正切定义,解决问题.
(1)正切函数定义是什么?(终边上任一点的纵坐标比横坐标.)
(2)角α是“标准位置”吗?(不是.)
(3)如何把角α放在“标准位置”?(平移向量 ,使P1与原点重合,得到新向量 .)
(4)P的坐标是多少?(x2-x1,y2-y1)
(5)直线的斜率是多少? =tgα= (x1≠x2)
(6)如果P1 和P2的顺序不同,结果还一样吗?(一样).
评价:注意公式中x1≠x2,即直线P1 P2不垂直x轴.因此当直线P1P2不垂直x轴时,由已知直线上任意两点的坐标可以求得斜率,而不需要求出倾斜角.
【练习】
(1)直线的倾斜角为α,则直线的斜率为 α?
(2)任意直线有倾斜角,则任意直线都有斜率?
(3)直线 (-330°)的倾斜角和斜率分别是多少?
(4)求经过两点 (0,0)、
www.qihang56.com(-1, )直线的倾斜角和斜率.(5)课本第37页练习第2、4题.
教师巡视,观察学生情况,个别辅导,订正答案(答案略).
【总结】
教师引导:首先回顾前边提出的问题是否都已解决.再看下边的问题:
(1)直线倾斜角的概念要注意什么?
(2)直线的倾斜角与斜率是一一对应吗?
(3)已知两点坐标,如何求直线的斜率?斜率公式中脚标1和2有顺序吗?
学生边讨论边总结:
(1)向上的方向,正方向,最小,正角.(2)不是,当α=90°时, α不存在.
(3) = ( ),没有.
【作业】
1.课本第37页习题7.1第3、4、5题.
2.思考题
(1)方程 是单位圆的方程吗?
(2)你能说出过原点,倾斜角是45°的直线方程吗?
(3)你能说出过原点,斜率是2的直线方程吗?
(4)你能说出过(1,1)点,斜率是2的直线方程吗?
板书设计
7.1直线的倾斜角和斜率
一、直线方程
二、直线的倾斜角
三、直线的斜率
四、斜率公式
练习
小结
作业
相关热词搜索:
评论排行
高二数学教案 热门排行
- · 不等式的证明(二)
- · 不等式的证明(三)
- · 不等式的证明(一)
- · 不等式的解法举例
- · 不等式的性质(三)
- · 算术平均数与几何平均数(一)
- · 不等式的性质2
- · 含有绝对值的不等式
- · 研究性课题与实习作业:线性规划的实际
- · 不等式的性质(二)
高二数学教案更新
- · 不等式的证明(一)
- · 不等式的性质(三)
- · 不等式的性质(二)
- · 不等式的性质(一)
- · 算术平均数与几何平均数--探究活动
- · 算术平均数与几何平均数(二)
- · 算术平均数与几何平均数(一)
- · 不等式的性质2
- · 不等式的性质1
- · 椭圆及其标准方程1
- · 圆的方程
- · 曲线和方程